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ABSTRACT 

An analysis is presented of two proposed methods for  providing ad- 

ditional gain margin in the stability augmentation loop of the X-15 hortxontal 

eurface control system. Expansion of the flight envelope to higher dynamic 

p res su res ,  Mach numbers and altitudes has made it imperative to introduce 

refinements in the basic control system. 

report  a r e  the "notch filter" and "hydraulic p re s su re  feedback" techniques. 

Both methods hzve considerable merit ,  hut the p re s su re  feedback approach 

The two methods considered in this 

sappeare to offer the most improvement. 
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FOR E WORD 

This study w a s  performed at the Cornel1 Aeronautical Laboratory,  Inc. 

under Contract NAS4- 123, administered by the Control and Guidance Branch 

of the NASA Flight Research Center, Edwards, California. The study was p r i -  

marily concerned with proposed stabilization techniques to be applied to the 

X-  15 flight control system, 

and aerodynamic damping were also to be obtained as pa r t  of the study. 

ass is tance of M r .  Norman Cooper and M r .  Gene Farr of North American 

Aviation in obtaining the necessary background information and s t ructural  

data i s  acknowledged, a s  i e  the aid and guidance of M r .  L a r r y  Taylor,  the 
NASA Projec t  Engineer for this study. 
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INTRODUCTION 

Structural  resonance effects have been observed in the horizontal s t a -  

bilizer of the X-15 research  aircraf t .  

e r  operation of the control system. 

construction, is a very low damped element. 

axial dissymmetry from the sweepback result  in strong coupling of the su r -  

face reeonance modes and the fuselage. 

effective in destabilizing the stability augmentation system (SAS) in the rol l  

mode. 

This resonance interferes  with the prop- 

The horizontal surface,  because of i ts  

This poor damping plus the 

This coupling i s  observed to be most  

Two methods which have been proposed for preventing this poorly 

damped surface from limiting the effective gain of the SAS loop a r e  analyzed 

in this report .  

in the SAS loop to selectively attenuate the f i r s t  mode s t ructural  frequency. 

The other method discussed is the application of p re s su re  feedback to the 

actuator valve to produce a more stable actuator plus load combination. 

The f i r s t  of these methods discussed employs a "notch fi l ter" 

Background information about the form of the s t ructural  interaction 

and aerodynamic damping to be expected is  a l so  included in Appendixes. 
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DISCUSSION O F  THE NOTCH FILTER TECHNIQUE 

The "Wotch Filter" method is  especially attractive since the addition of 

such elements does not require major modifications in the surface power actu-  

a to r ,  

frequency device, 

face. 

excite resonant bursts in  t e surface. 

the sotch a r e  not too troublesome i f  the notch design provides a wide enough 

attenuation band to cover possible variations in the s t ructural  resonant 

frequency . 

The Notch Fi l ter  capabilities a r e  limited, however, since i t  is a fixed 

Also, it would not actually improve the damping of the Y U T -  

Gust disturbances o r  other external influences would sti l l  be able to 

The fixed frequency character is t ics  of 

Appendix A i s  a detailed discussion and analysis of the results of in-  

Appendix E3 i s  a discussion of the troducing a notch fi l ter  into the SAS loop. 

t ransfer  function of the s t ructural  interaction for  the f i r s t  two modes and 

Appendix F provides background inforination helpful in synthesizing the notch 

t ransfer  function. The increase in allowable gain a t  the f i r s t  mods rcrjults in 

a gain ratio ( o r  gain margin) of the Notch Network versus  no notch of 

26.6.  
shifts in the frequency range of the residual oscillation a re  negligible. 

the single mode picture of the phase character is t ics  in  this region and the two 
mode picture a re  not significantly different, 

1.99 ~ 

0-m-W- 

Also 

The phase character is t ic  of the notch has  been chosen so that phase 

The linear analysis indicated a very  stable second mode r e s u l t i n g  fro111 

introduction of the notch because of the phase contribution of the notch net -  

work at the second mode frequency. 

observed in  the actual system. 

c rease  in  gain can be obtained by experimentally trying networks havirig p l i r i  t, 1: 

shifts in  the 214 r ad / sec  region and negligible phase shifts in the resiriwl 0 s  - 

cillation region. 

which would be calculated f rom the l inear picture  is subject to drastic c h ; t i ~ g v ~  

when the eystem non-linearities a r e  included. The notch f i  Iter docs I I ' L V C ~  s o i i i ( .  

additional attenuation in  the 214 r ad / sec  regian which can be u s e d  a b  i~ p o ~ s i l ~ l ~ ~  

indication of the allowable gain improvement lietween the cast of  1 1 0 - 1 1 o t (  11 a t i t l  

This stability character is t ic  has riot L ) t . t . i i  

It is felt by the wri ter  that some fur ther  1 1 1 -  

Since this portion of the analysis is not valid, a n y  ga in  i i i < ~ ~ * g i i i  

2 
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the use of a notch network. 

then a gain increase of approximately 4: l  over the uncorrected allowable 

gain for  the second mode is possible with the addition of the notch. This 

would resul t  in  an  over-all  gain margin of 4 x 0.78 / 0.074, o r  40. This 

points to the fact  that insufficient knowledge exists in  the 214 r ad / sec  region 

to make anything but an  "educated guess" about the gain margin,  

If the non-linearities remain equally effective, 

One thing is certain: the first mode is effectively removed f rom the 
problem when a notch fi l ter  is introduced in  the SAS loop. 

notch in  the 214 rad /sec  region would stabilize that mode also.  

Possibly a second 
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DISCUSSION O F  THE PRESSURE FEEDBACK 'TECHNIQUE 

While the "notch filter" technique can be considered to be a reason-  

able llfirst fix", it  would sti l l  be better to cor rec t  the actual trouble resul t -  

ing f rom the undamped surface-actuator combination. One approach which 

is most obvious is to use a horizontal stabil izer with more  inherent damping. 

The next approach would be to provide art if icial  damping. 

rigid actuator,  external artificial darnping is ineffective since the surface may 

be visualized as a cantilever with a relatively rigid supporting s t ructure .  

Since the motion of the supporting s t ructure  (i.  e . ,  the actuator,  e tc . )  i s  very 

small ,  very little damping can be coupled into the surface near i t s  root.  

With a relatively 

If this art if icial  damping i s  applied through the actuator,  however, 

i t  i s  possible to introduce actuator forces which are  of the proper  phase and 

amplitude to absorb the energy stored in the surface.  

The most obvious approach to obtaining this art if icial  damping i s  by 
This car1 be obtained by the use of pressure  feedback to the actuator valve. 

many techniques. 

ploys the p re s su re  feedback technique to greatly improve servo  perforinaiice. 

It is of course sketchy, analytically, since such inlormation may be considerod 

proprietary.  Reference 2 considers many techriiques which  a r e  s imilar  to Llit. 

thc p re s su re  feedback discussed la te r ,  but again, is a lso rather skctchy . 
References 3 ,  4, and 5 consider techniques erriploying p res su re  fee:dl)ac,h 01 

the essential  equations of hydraulic actuators uperating or1 high irierLid I o ~ i c J ~ .  

Reference 6 describes techniques for summing load reaction infoririati t)~~ 1 1 1  

to the control valve to stabilize large inertia loads. 

been encountered which would apply to the specific problem d i s c u s s o d  111 

Appendix C. 

Reference 1 describes an electrohydraulic valve which ein - 

V e r y  I i tLle ,  work l id>  

The results of Appendix C can be  eiurirnarized d s  f o l l o w s .  P r e s s ~ i r c  

feedback techniques can be applied to stabilize an actliator t resondiit I C ) ~ I I I  

configuration to a very marked degree.  

analysis is presented which results in  prdctical v i i l ~ l ~ > ~  l ~ ~ r  t h r :  n c . ~  t:shd r y  

A syste l l la t lc  d e s l p , ~ ~  tc:c h n l q \ i e  , t i ~ ( l  

4 



parameters  to stabilize the servo system. 

C to present a workable valve for the actuator configuration in  the X-15.  

No attempt w a s  made in  Appendix 

Appendix D analyzes the SAS control loop, using an  actuator of the 

type discussed in  Appendix C. , deg/deg / sec  

is found to be 2.54 as compared to 0.059 obtainable without any compensation. 

The gain margin,  o r  gain improvement, that these results would indicate is 

2 . 5 4  / 0.059 = 43. 

greatly improved with pressure  feedback of the type analyzed. 

important o r  significant improvement which is possible with p re s su re  feed- 

back is the allowable reduction in backlash, hysteresis  and control cable 

The maximum allowable gain 

The actuator frequency response and phase shift a r e  

But the most 

compliance which is feasible without exciting the resonant surface.  

The present  actuator employed to deflect the horizontal stabil izer 

and the reflected load of the horizontal stabilizer a r e  unstable at valve gains 

considerably below the present  operating valve gain. The actual system r e -  

mains stable only because of the control cable flexibility, hysteresis  and dead- 

band which effectively reduce the systcrn gain. 

reduced, for example,. by locking the SAS servo and the pilot input point, the 

surface actuator and its load exhibit the predicted instability. 

If these non-linearities a r e  

Along with the s t ructural  resonance problem a non-linear oscillation, 

resulting from this hysteresis and deadband mentioned, must be kept below 

safe and tolerable l imits .  

f rom these non-linearities by reducing the s ize  of these non-linearities only 

tends to destabilize the structural modes. This oscillation amp- 

litude is a function of effective LbA x K . 
stability at la rge  values of ZLs, . 
these non-linearities to be reduced in  s ize  as much as is practically possible 

without destabilizing the structural modes thus affecting a reduction in the 

amplitude of the residual oscillationwhich would not be possible by any external 

fix such as the Notch Fi l ter  technique. 

Any attempt to reduce the oscillations resulting 

The present  system has marginal 

P r e s s u r e  feedback stabilization allows 

Actually the pressure  feedback technique automatically generates a 

These "notches" notch a t  the resonant modes of the actuator-load system. 

5 



a r e  inherent i n  the system equations since i t  i s  necessary,  no mat te r  what 

stabilization technique is used, to prevent actuator motions from existing at' 

the resonant frequencies. 

The question now a r i se s  - af ter  this description of the capabilities of 

P r e s s u r e  Feedback - i s  i t  possible to construct a reliable device (prefer -  

ably all mechanical) which will operate the way the analysis has suggested. 

It appears that the answer to this question is yes. 

construct such a device, i t  is also very likely possible to construct one which 
Not only is i t  possible to 

* will f i t  the present actuators without any major  modifications in linkages, e tc .  

Appendix E describes such a valve schematically. Some comments 
should be included concerning some pract ical  problems associated with con- 

structing a pressure  feedback valve. 

ysis  of Appendix C must  be modified. 

i e  in the hydraulic high-pass network. 

the corner  radian frequency, '/YS , is too sensitive to temperature to be 

practical .  

of viscosity. 

bolic, thus the time constant y3 is amplitude dependent. 

litudes, the 7 3  value is very small .  

litude limit cycle oscillation whenever the actuator has no input commands. 

The linear picture employed in the anal-  

The major non-linearity encountered 

The capillary used in  determining 

A sharp edged orifice is used because it is relatively independent 

of this type orifice is pa ra -  The flow-pressure character is t ic  

Fo r  smal l  amp- 

This will tend to produce a smal l  amp-  

6 



CONCLUSIONS 

Structural  interaction and damping has been calculated for the hori - 
zontal surface and fuselage. This data, together with pertinent flight control 

system data, has been used to determine the effects of two proposed stabili- 

zation techniques for the horizontal surface control system. 

on the basis of a linear analysis that both techniques a r e  able to provide a 

relatively high degree of system stabilization. 

ployed in the notch fi l ter  analysis is idealized to such an extent that the non- 

l inearit ies would modify the available stabilization of the second s t ruc tura l  

mode (first torsion). The interaction between the actuator and i ts  resonant 

load i s  controllable by p res su re  feedback techniques. The Stability Augmen- 

tation System employing pressure  feedback - stabilized actuators appears to 

be the most effective way to improve the stability of the X-15 flight control 

sys tem. 

I t  has been shown 

The model of the actuator e m -  

Analysis of a complex resonance phenomenon which i s  further con- 

fused by uncertain amounts of non-linearities must  always depend upon c a r e -  

fu l  consideration of the effects of these non-linearities on the l inear picture. 

One must not require the corrective action to be applied in  such a manner 

where the non-linearities a r e  significant and could drastically reduce the ef-  

fectiveness of the desired correction. 

ve ry  effective when considered in  the l inear analysis,  but ca re  must be taken 

to not have non-linearities such as valve driction, hysteresis  and deadband 

of such an  amplitude that they a r e  detrimental  to the operation of the p re s -  

s u r e  feedback portion of the control system. In a s imi la r  fashion, the lin- 

e a r  picture of the notch fi l ter  corrective technique is very  promising. 

l inearit ies of the type which produce phase shifts in the system a r e  vapable 

P r e s s u r e  feedback techniques a r e  

Non-  

of destabilizing cer ta in  modes of oscillation which a r e  otherwise quite stable.  

This is apparently occurring i n  the X-15 horizontal surface SAS loop since the 

l inear  analysis predicts a ve ry  stable system resulting from the use of the 

notch fi l ter  to stabil ize the SAS loop. 

employing notch filters to reduce the gain a t  successive resonance modes until 

the over-all  SAS loop gain can be increased to the desired l imits.  This would, 

of course ,  be a tedious and time-consuming task and i t  i s  quite possible that 

One can envision a n  i terative technique 
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aerodynamic effects and temperature changes would shift the resonant modes 

(especially the higher modes) enough to make such an  approach ineffective. 

It is felt by the wri ter  that application of the pressure  feedback tech- 

nique i s  potentially a better approach and should a l so  be investigated on an 

experimental basis. Although only one s t ructural  mode was included in  the 

analysis, the trend observed in the analysis, i. e . ,  the manner in which c e r -  

tain portions of the equations behaved, seemed to indicate that additional 

modes would also be stabilized with little or no difficulty. 
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PRECEDiNG PAGE BLANK NOT FILMED. 

APPENDIX A 

ANALYSIS O F  THE NOTCH FILTER TECHNIQUE 
FOR STABILIZATION O F  STRUCTURAL MODE EFFECTS 

The major  reason for the employment of a notch fi l ter  for the reduction of 

structural  resonance effects on a servo actuator is that it provides high attenuation 

of the frequency band in the vicinity of the particular s t ructural  mode. 

The notch fi l ter  chosen for stabilizing the SAS loop for the 12 - 14 cycle 

resonance of the horizontal surface of the X-15 a l so  ha8additional boundary con- 

ditions. 

clusion of a notch filter does not increase the residual oscillation amplitude. 

The phase lag in the 0 - 4 cycle region must  be very low so that the in- 

With these requirements i n  mind a notch fi l ter  transfer function was ob- 

tained experimentally a t  NASA Flight Test  Center which had these specifications 

and which did stabilize the structural  mode in  the 12-14 cycle region. 

observed on the X-15 however, that the torsion mode at 34 cps became unstable 

at a gain level only a moderate amount above the original gain. 

It was  

The discussion that follows employs a l inear picture of the SAS system 

and analyzes the SAS system with and without the notch fi l ter  for the effects of 

one and two s t ructural  modee. 

The SAS loop equations will be considered in  their order  of increasing 

complexity. 

CASE I - Normal SAS Loop with One Structural  Mode 

Using the root locations of the SAS servo, shaping, and gyro provided 

by N M ,  * e  SAS loop block diagram (Figure 1) becomes: 

11 
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ROLL ACCELERATION ACTUATOR' 
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Figure A-1 SAS Loop Block Diagram 

Since the problem of stabilizing the SAS loop exists a t  zero  dynalnic p r e s -  

sure and i e  relatively unchanged for small l. S A  values,  

"be resulting roote of the character is t ic  equation for  the SAS loop a r e :  
S = o 

L is assumed zero .  

one zero  a t ;  

poles at: 
s = -0.4 ij80 ( c 3  = 80, = 0.005) 

s = -171  i j 391 .5  ( 0  = 4 2 7 ,  5 = 0.40) 
s - -290 i j140 (t3 = 3 2 2 ,  5 = 0.90) 

s = - 8 h . 5  -+j166.8 ( W  = 188, 5 = 0.46)  

2 -'/T = -6.667 for Z = 0 .  15 sec 

1 2  



maximum system gain allowed for stability of the over-al l  loop, i .  e .  , the gain 

at which some root c rosses  the imaginary axis into the right half plane. 

A summary of the phase lags  contributed to the phase a t  -0.4 t j80  is: 

SAS - 2 6 . 0 "  
Gyro -9.0"  

Shaping -25.8" 

Actuator -85.5 " 
The sum of these lags is -146.3' 

Therefore, the departure angle from the pole a t  -0 .4  t j 80  is 180" - 146.3" = 33.7".  

The product of the distances of the poles to the -. 4 t j 80  point divided by 

the distance from the zero and the radial distances f rom the origin to the poles 

determine an  approximate value for V for each unit distance from the pole a t  

-0.4 +j80. 

K - 0.00~18~(+)  -I 

. For  .the calculated effective I"y/r ,  
= 1.36 x 0,02027 = 0.0276 and P = 0 . 4  / cos 33.7" = 0.481 

(this compares reasonably well with the NASA calculated 0. 1 gain when the 

= 0.059 deg 'Xg-GZ 

"Y& value of 0.015 is used). 

To summarize Case I, the root a t  -0.4 t j80 and i t s  conjugate a r e  the two 

roots of the SAS loop which first cross  the imaginary axis with increasing SAS 

loop gain, 
of 'XY/X# . The departure angle is t33 .7"  (positive counterclockwise). 

The gain K has been found to be about 0.059 for the Calculated value 

If one considers the total loop gain through the s t ructure  'X./r, 

the root locus c rosses  at a gain of 

13 



= 0.00163 

Fig. A-2 is an ESIAC root locus of the over-all  SAS loop locus. The 

gain values indicated a r e  for 

+J 

+ 
Id n 

Figure A - 2  SAS Loop, F i r s t  Mode Only 

CASE I1 - Normal SAS Loop With F i r s t  Two Structural  Modes 

I 
-I 
-1 
I 
I 
I 
1 
I 
1 
i 
1 
I 

Appendix B discusses the s t ructural  t r ans fe r  function in  considerable de- 

tail. The t ransfer  function which will be used in  this discussion is  

#(s) = _- . - - 

+ At -  +I 
214 " >  S 

80 

14 



a s  S -+ 0, has  a negative value. This is consistent with a right hand s e t  

of coordinates. 

terclockwise rol l  of the fuselage f o r  a clockwise spindle angle input. 

in the same  direction a s  the roll  produced by aerodynamic moments.  

independent of the way the coordinate system is defined, one must  have a set 

of loop equations where the low frequency s t ructural  interaction for fuselage 

roll  is of the same phase a s  the aerodynamically induced roll  for  a horizontal 

stabilizer deflection. 

At low frequencies, the s t ructural  interaction produces a coun- 

This is 

Thus, 

The "Aerodynamic and Structural Roll Acceleration" block in Figure A-  1 

will therefore have the following transfer function 

.c 1 

which is approximately 

Fig. A-3 is an  ESIAC root locus plot of this case .  The departure angle 

of the first mode is relatively unchanged. 

214 r ad / sec  has  a departure angle of 7 1.6" counterclockwise (calculated). 

The locus of the second mode pole a t  

It is worth noting he re  that the denominator has  a form - 

where the Qi are  the quadratic factors for  the gyro, SAS servo ,  e tc .  This 

function D is the form which i s  solved by a "zero degree" root locus. 

15 



Figure A-3 SAS Loop, F i r s t  Mode and Second Mode 

The gain K required to drive the first mode roots unstable is modified 

slightly by inclusion of the zeros  and second mode poles. 

The gain is modified by a factor of 0.934. Thus 

= 0.934 x 0.00338 x 0.481 - ( 3' 
~'~~~~~ x 0.481 = 0.934 x 
v 

. 0 8 0 2  

ld = 0.0749 

therefore ,  the f i r s t  mode is unstable fo r  total  loop gains of k lX% exceeding 
0.00152. 

The gain required to  dr ive the second mode roots unstable can be 

16 



calculated by geometry to be 

0.005 x 214 = 3 . 3 9  
and r =  

cos 71.6" 

3.39 x 0.00467 = o , 7 8 0  therefore r(c = 
0.02027 

The maximum total loop gain which is used for the root locus plots, i. e . ,  
=%, 

1, 
- for instability is .01583 

To summarize Case 11, the major  results f rom including the second 

mode a r e :  

a. The maximum stable gain of the f i r s t  mode is changed 

slightly from 0.059 to 0.075. 

is unchanged. 

The departure angle 

b. The second mode departure angle was computed to 

be 7 1.6" counterclockwise and the maximum stable 

gain w a s  calculated to be 0.78. 

CASE 111 - SAS Loop Plus F i r s t  and Second Structural  Modes and 

NU-NASA Notch Fi l te r  

Since the notch fi l ter  selected by NAA and NASA was primarily intended 

to attenuate the frequency band around the f i r s t  s t ructural  mode, this f requency  

band will be explored f i r s t .  

The notch fi l ter  transfer function selected is: 

17 ' 



G (S) I 

The roots of G (S) are located a t :  

Zeros: 

s = -78, - 2 2 . 4  ( W = 41.8,  = 1.2) 

s = -5 .0  i j79 .8  ( O  = 80, = 0.0625) 

Poles : 

s = -5 .01  *j41.5 ( c3 = 41.8,  g = 0.12) 
s = -589, -10.87 ( 0  = 80, 5 =. 3 . 7 5 )  

In the region around -0.4 t j80 ,  the only root which is relatively close is 

If the gain and phase contributions of a l l  the roots a r e  the zero  at - 5 . 0  t j79.8.  

calculated for this region, then it is possible to obtain an  accurate  approximatioii 

for the locus and the effective IG values resulting from the notch f i l t e r .  

The filter gain a t  j80 i s :  (using distances f rom the roots to the .tj80 poilit) 

The'phaee contribution of the notch f i l ter  to the departure  angle of the root at 

-0 .4  tJ80 is -51 .3 ' .  

113 

I' 
I; 
I 
-I 
-I 
1 
I 
I 
I 
I 
1 
I 
1 
I 
I 
I 
I 
I 
1 



I 
'I 
I 

' I- 

I 

le- 
! 
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Thus the departure angle of the locus from the pole a t  -0 .4  t j 80  i s :  

33.7 - 51.3  = -17.6 ( i . e . ,  17.6" clockwise) 

Since this departure angle is  small, the locus will c r o s s  the j W  axis 
in a region close to the j80 point. Thus the gain contribution resulting from the 

distance between the crossing point of the locus and the i@ 
-5.0 t j 79 .8  is still nearly 1 /5 .  

axis and the root at 

The distance from -0 .4  +j80 to the locus intersection with the j W  axis  

ie  approximately 

= 0.42 0 .4  
cos 17 .6"  

Thus the total loop gain required to make the SAS loop unstable a t  the first 

s t ruc tbra l  mode is: 

420 - 0.0405 #- = 30.5 x 0.00152 x - - r, .481 
=w 

where the 30.5 is the gain improvement resulting from the notch fi l ter  attenua- 

tion and the rat io  .420/.481 is the rat io  of distances of the intersection of the 

two loci and the jo axis f rom the pole at -0 .4  t j80.  

maximum total stable loop gain with f ~ o  ntWch filte?. 

The factor 0.00152 is the 

Thus, if '#v& 

at the first strudtura'l mode i s  1 .99 .  
= 0.02027, the gain K required to produce instability 

Figure 4 is a n  ESLAC root locus plot of the SAS loop including the two 

s t ruc tura l  modes and notch f i l ter .  The roots located at -5  t j41 .8  c ros s  the 

j@ axis at a gain of approximately 0.6.  Also, it should be noted that the 

second s t ruc tura l  mode roots now have an  advantageous departure angle and they 
c r o s s  the j 0  axis at a total loop gain of about 10. Thus it would seem that the 

notch filter has "gain stabilized" the first mode and "phase stabilized'' the sec -  

ond mode. 
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+ +  

-j- 

- *  

Figure A-4 SAS Loop, First Mode and Second Mode Plus  Notch Filter 

The departure angle of the second mode root locus , sans f i l t e r ,  is t 7  1.6';  

the additional phase contribution resulting from the notch fi l ter  at 214 r a d / s e c  i s  

t 45" .  

(counterclockwise) which is in  a direction of increased damping. 

The departure angle is therefore rotated this amount to a value of t 116.6' 

Unfortunately, the physical entity does not exhibit this extreme stability 

predicted above. The mechanism (non-linearities , additional coupling effects , 
e tc . )  which produces this instability is beyond the scope of this discussion. I t  

would still be possible, though, to add phase stability to this situation by pro-  

viding phase shift a t  this 214 r a d / s e c  region sufficient to "phase stabilize' '  this 

mode similar to the above picture .  Of course,  l a rge  amplitude non-linearities 

again destabilize this mode - but possibly at a higher gain. 

To summarize Case 111, the notch filter provides considerable gain im-  

provement insofar a s  stabilizing the f i r s t  s t ruc tura l  mode. The l inear analysis 
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also resulted in a stable second mode which is not the case in  reality. 

locus of the second s t ructural  mode remains close to the jU, 
lowing any inherent non-linearities to easily de- stabilize i t .  

The root 

axis,  thus a l -  

A simple phase locus plot can i l lustrate what can possibly be happening: 

locus of l inear system 

-.. I 
i - '1. 

'%locus of the system for the cast: where the ' 1 non-linearity contributes an  additional ' 1 10" phase lag 
; I  
4 
k l o c u s  of the system for the case where the 

non-linearity contributes an addjtional 
1 20" phase lag 

It is possible to improve the allowable loop gain by properly "phase s t a -  
Whether phase lead or phase lag would L e  the most bilizing" the second mode. 

effective cannot be determined theoretically. 

be used. 

"Cut and t ry1 '  techniques must 

1 
a 
1 
1 
I 
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APPENDIX B 

CALCULATION OF STRUCTURAL INTERACTION 
FOR FIRST BENDING AND FIRST TORSION MODES 

OF THE HORIZONTAL STABILIZER ON FUSELAGE ROLL 

If only the f i r s t  two normal modes of the stabil izer a r e  considered ( i .  e . ,  

first bending and f i r s t  torsion) the resultant t ransfer  function for fuselage roll  

8 s  a function of horizontal surface spindle angle including the effects of all shear  

and moments ccnsists of a quartic eve r  a quartic.  

accurate as but since this is only the second extension beyond the 

rigid body picture,  it is not surprising that the t ransfer  function has  this form.  

This is recognized to be in- 

s 3 00 

Actually, the calculated interaction t e r m s  a re  very  nearly cor rec t  to 

cancel out the S4 t e rm.  Therefore, the order  of the numerator equation 

would be automatically only second. 

The fuselage roll  / stabilizer angle t ransfer  function, @@j, can be ex- 

pressed  as 

(omitting the damping t e r m s ,  which are  small) .  

L Y  
The calculated values of /I, , @, , #z , etc.  a r e  

I,, = 2347 lb  f t 2  

1, = 3600 x 32.2 lb ft2 

'zR = 0.02027 

2 3  



a, = 1.35 

cb,= -0.3698 

10.65 103 
I% 

1, 

a3= * 

a, = 1.417 x l o 3  

= 0.092 

= 0.0122 

The resultant equation for $ (S) (omitting damping) has  a numerator 

function 

t0.0198 S* - 7260 S2 t 2 . 9 3 ~  lo8 = 0 

The accuracy of the calculations for #, and GS a r e  not on such a rigid foundation 

with respect to the s t ructural  data that a slight readjustment cannot be allowed to 

simplify the form. 

fected by the change. 

The resultant resonant peak heights a r e  not mater ia l ly  af-  

If one sets #, = 1.36 and ds = -0.36, the numerator of ($(SI reduces 

7780 sx - 2.93 * I O 0  = 0 

yielding roots at 

s = *194 rad /sec  

For  small damping, the roots of the denominator, 

a r e  S = kj84.2 and S = *j215 

24 

I' 
I 
I 
=I 
-11 
I 
I 
I 
I 
I 
I 
II 
I 
I 
I 
I 
1 
I 
1 



I 1  
I 

Small values of damping do not affect the imaginary par t s  of the roots.  

1 
I- 
I- 
I 
I 
11 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
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These approximations a r e  not accurate ,  of course , when computing the 

height of the resonant peaks.  The damping must  a lso be included. 

Expanding the denominator of (B-2) with damping te rms  included resul ts  

in: 

( B - 3 )  

At resonance the remainder in the denominator becomes 

Resonance occurs  at S values close to j0, and j 0 ,  . The r e -  

mainder ,  ap is not too sensitive to values of 0 , therefore ju, (/+a,) and 

j cdZ ( I  + A a )  

A, and A2 are  small quantities. 

are  reasonably accurate values for substitution into A, , w l ~ e  re 

L3, (/+A,) and Ua(/+b,) a r e  obtained f rom solving for the roots of ( B - 4 ) ,  

Since the odd power te rms  a r e  the only significant ones in ( B - 5 ) ,  s e t t i ng  

S = jo resul ts  in  

25  



For small A, , this reduces to 

r3 1IIWOWNGI 

% s o N a # m  = 84 rad/sec if c3, = 80 radians, 

therefore A ,  = 0 . 0 5 .  

since A,= - I  for this case 
0 1  

40, 3 - = a, ut * 1 . M  
2i r 

= 2.355 0, ’ddz 

where #, = 1 . 3 6 ,  Oz = - 0 . 3 6 ,  g3 = 0.092,  g4 = -. 0122 

0, = 80 rad/sec ,  and O2 = 214 rad/sec.  

In a similar fashion, the value for the denominator at  the second resonant 

mode can be computed to be 
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%aSeN*Nw = 215 rad/sec,  Wr = 214 radlsec,  D ,  = 0,00467 

The numerator of Equation B - 2  when expanded has the form 

Substituting the condition for resonance (Equation B-4) results in a remainder 

in the numerator 



Using the expressions for  resonant frequencies of @,(I +a,) and d 2 ( l + A 2 )  
Equation ( B -  1 1 )  can be written as  

In a similar fashion, AN, can be found: 

Using the values for L3,, 0 2  , 4, , Az, e t c . ,  

AN, = u~o,' * 3.16 

% 9 @,OpJ * 0.782 

Therefore, the magnitude of the resonant peaks can be calculated to be: 

and 

0.982 
= 38.5 $or 310.005 - =  

2.035 * Z $  A% 

t 



To summarize:  The damping ratio assumed (0 .005)  results in amplitude ratios 

L v  @(S) = -- 

Because of the choiceof @, and cd, , the t ransfer  function @ (5)  has 

0.40 - +L40 

e + I  2/52 L + l  
04 ' 

the form 

I LV 

Lac 
Qico - -- 

assuming negligible damping. 

Separating this into two components 
r 

+ 1.40 0.40 - 
5 2  S 

84" 84 2/5 2 15  
- S' tO.OI-+/ s '-$ + 0.01 - + I  

L - 
Thus the more  complex equation for @(S) can be written to include the damping. 

r 1 

I -I 
AN 
bo 

The approximations used in  obtaining - 
two set of numbers,  i . e . ,  1 .35  as compared to 1.40, etc. If g, and gz 

result  in the difference between the 

were  not the same and i f  @, 
be necessary to obtain the peak amplitude ratio by the more  complicated approx- 

imation technique above. 

and 8, were less  fortunately chosen, it would 

If the final @(S) transfer function is  readjusted to have resonant peaks 

at 80 r ad / sec  and 214 rad /sec  and  a gain changing pair  of zeros  a t  A194 r ad / sec ,  

the t ransfer  function has  the form 

214 

s 
00 
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This can be approximated by 

ZXV 

S 
0.56 =w 1.36 f rc X 

- $1 
T t  0.01 - + /  

pcs, = sz S 
-+0.01-+/ so* 80 2 14 214 

Any technique which is too sensitive to changes in the above 3 
would not be a very logical approach to stabilizing the SAS system. Therefore ,  

i t  is felt that the accuracy of approximation i s  not too cri t ical  and that prec ise  

knowledge of it should not be necessary for  the scope of the analysis in which 

this data is employed. 

I 
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APPENDIX C 
ANALYSIS O F  PRESSURE FEEDBACK STABILIZATION 

O F  A HYDRAULIC ACTUATOR HAVING A RESONANT LOAD 
AND A FLEXIBLE SUPPORTING STRUCTURE 

I 
I 
I 

_L 

The equations for an actuator t ransfer  function a r e  derived on the basis  

that the device is a hydraulic boost actuator with mechanical command inputs 

determining the position of the cylinder. 

8 ervo configuration. 

F i g .  C- 1 is a pictorial  drawing of the 

I 
I 
I 

Figure C-1 Pictor ia l  Diagram of Servo Actuator and Load 

K 
M c  - 

The schematic of the mechanical coupling is shown in  Figure C-2. 

1 

I 

f 

Figure C-2 Schematic of Mechanical Coupling of Servo Actuator 

31 



The equations of motion can then be determined by computing the acceleration 

on each mass. 

These equations can be expressed in Laplace operation form and written 
as a matrix: 

One can  then solve for the various motions, e .  g . 

32 



where 

s -  

One must then construct a block diagram of the actuator showing how 

the various flow rates, e t c . ,  result in an output cylinder displacement. 

-- 

Figure C - 3  Block Diagram of Sesvo Actuator and Load Interaction 

3 3  



where 

Xi = input command position, f t  

= actuator output position, ft 

= pres su re  feedback valve displacement, f t  

= actual valve displacement, ft 

= flow rate  / unit valve displacement, ft3/= 

= fluid flow rate  into cylinder, f t3 / sec  

volumetric ra te  resulting f rom cylinder motion, f t3 / sec  

= volumetric ra te  resulting from pieton motion, f t3 / sec  

= volumetric ra te  e r r o r  which determines internal p re s su re  

f t  

f t3/  9 ec 

= total a r e a  of piston faces ,  ft2 

= a r e a  of one piston face, ft2 
A,  
A 

B = bulk modulus of fluid, lb/f t2  

v = volume of one chamber,  f t 3  

ki = leakage between chambers 

The actuator equations resulting f rom this block diagram can be ex- 

pressed  as a n  *c/Xi t ransfer  function which includes the effect of the tiupport 

s t ructure  motions on the valve displacement. 

cylinder displacement is measured relative to the piston, the effect of support 

flexibility i e  considerably less and these equations aye not the co r rec t  ones.  

For that case ,  output would be Xc- X, f o r  X i  

F o r  position e r r o r s  where this 

input commands. 

Let the p re s su re  feedback block have the form 

and assume the leakage &f 
2 is neglipible (any leakage a l s o  tends t o  provide daii-iping 

34 



but the fluid flow losses  severely limit this technique for stabilizing a servo 

pis ton). 

One can therefore form the set  of loop equations which will result in an 

expression for the over-all transfer function. 

For ease of handling, let the various determinants be defined as: 

IAl = -as 

0 
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From the matrix expression (4 ) ,  one can write expressions for x, , 
X+, , X,  , X ; ,  etc.  

From the block diagram (Fig.  C - 3 )  one can write 

Then combining (10) and (14) 

Q* PA, 
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I 
thus 

therefore 

- but since 
QA 

I + A  - XC 

Qa 

- s  

Qlt  

Also, from Figure 3,  one finds that 

I 
2- EA I 4  - V ID1 I 

* -  - P 5, I 

Q* Qg PA7. 

- W - D  
B A A r  fl A s I A I  

v PI ID1 
A,, I+ 

B 

(C -16 )  

( C -  17) 

( C -  18) 

( C -  19) 

the pressure feedback i s  expressed as 
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The valve position i s  expressed by the equation 

xv = xi - XAP - x, 

which results i n  the equation 

Equations ( 1 7 ) ,  (20), and ( 2 2 )  result  i n  the over-al l  actuator t ransfer  

function: 

If equation (23) is expanded, i t  becomes an  "algebraic nightmare" and is 

impossible to analyze. 

present form b y  "dismembering" i t  to exhibit the effect of - v D k3> 
etc.  on the final - t ransfer  function. 

It therefore becomes necessary to analyze (23)  in i ts  
B Z'J Y e ,  

x e  

xi 
Setting the denominator of equation ( 2 3 )  = 0 exhibits the roots of the cha r -  

XC 

x i  
acterist ic equation. These roots a r e  the poles of the - t ransfer  function. 

3 8  

( C - 2 0 )  

( C - 2 1 )  

(C-22)  



They a r e  a lso the poles of the transfer function expressing the reaction force of 

the load on the actuator s * w x ,  
X i  /r 

By factoring] (24) can be written as 

Therefore] for  large (25) reduces to 

(C-24) 

(C-25) 

( C - 2 6 )  

This is a valid approximation for hydraulic systems since the effect of 

on the roots of the characterist ic equation i s  very small .  This has been 
B 
V 
- 

determined analytically by the writer using root locus techniques s imi la r  to the 

one8 discussed in  la te r  portions of this analysis. 

obviously cannot make this approximation. 
Pneumatic servos having small  

B - 
V 

If there  is no p res su re  feedback] (26)  reduces to 
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Expanded, (27)  becomes 

I 
I 
I 
I 

Y C  

e, X i  
for  the expression for the roots of the characteristic: equation o f  - 
function of valve gain - . 

a s  a 

A 

The term -(,US&')' in equation (27)  has very little effect on the roots r e -  

for  values of k;, 2 cd and M', << m .  [ I  sulting from 

The major influence i s  to lower the value of the roots of (nS2+f iS +g,) . 
For typical values of )n , f l  , k? , e t c . ,  the natural radian frequency, LJn , of 

the resulting poles becomes 

which is the expression for two spr ings  in s e r i e s .  

1 
The damping i s  increased only slightly for the f l  , M , h! , e t c . ,  values 

which a r e  being considered in this analysis.  

If, for  example, we assume g+ =4K arid t l  is such that 9 9 = 0. 2 ,  then 
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for the X-15, representative values would be 

a,,, = 2 g+mp up 

19 = 1.49 x l o6  

% = 

dm = 89 r ad l sec  

m, = h = 1 slug (assumed) 

4- = 1220 r ad / sec  
= 488 

4 K = 0.372 107 

111 = 47 s lugs  

f l  = 83.6 (for = 0.01) 

Therefore, equation (27 )  becomes 

This can be reduced to 

A subsidiary root locus of the denominator or  a simple solution of the 

fourth order  equation resulting from the combined te rms  results in the charac-  

te r i s t ic  equation having the following form:  

F o r  values of - kf, = 30 (the valve gain of the X -  15 actuator), the closed 
A 

loop roots a r e  
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s = -55 I 
g, 
A Poles (functions of - ) S = + 3  *j83. 1 

s = -143 ij953 J 

S = -0.89 ij89 
S = -244 kj1120 

Zeros (fixed) 

Since this is  a description of an unstable actuator,  i t  i s  obvious that the -I 
I 
I 
1 
1 
I 

1 
1 

valve gain existing in the X-15 is reduced in this loop (i. e . ,  the flexibility, etc.  

of the supports a r e  not sensed by the valve because of the hysteresis  and valve 

friction in the present  system). 

present  X-  15 power actuator i s  observed to be unstable, Since i t  is extremely 

difficult to assign a linear gain to this situation, i t  will  only serve  to show how 

the actuator frequency response would appear to be i f  the gain was reduced to a 
value where the roots a r e  stable. This low gain would drastically reduce the 

actuator frequency response.  Since i t  is interesting to find the phase shift in the 

20 - 40 rad/sec region resulting from this actuator model, a simple phase angle 

solution was made ignoring the effect of the low frequency r ea l  pole. 

tribution to the total phase lag due to roots a t  the 80 r a d / s e c  region was l e s s  

than 2 "  lag to 40 rad /sec .  This is a negligible t e r m .  

to ignore the phase effects of the s t ructural  roots when considering the residual 

oscillation problem. 

If some of this hysteresis ,  etc.  is reduced, the 

The con- 

It i s  therefore real is t ic  

1 
If pressure feedback of the type shown in the block diagram (Figure C - 3 ) .  

is included, the position of the zeros of the numerator of (26) is modified i n  

such a manner to  increase the damping of the roots of the character is t ic  equation. 

These zeros a r e  located a t  the roots of 1 
( C - 2 8 )  I 
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It can be shown that 

0 

hr 

- I  

0 

ID1 = Sz I F I + a S  I GI 

Thus, (28)  can be written as  

The position of some of the zeros of (29)  is a function of OC . This de- 
pendence on aL is exhibited by a subsidiary root locus of 

or  

Expanding (30) 

4 3  

( C - 3 0 )  



This reduces to 

d 
where - determines the closeness of the roots of (30)  to the Toots of I GI . 

m+Me 

This locus determines the limitations of the pressure feedback. Large 

values of ol reduce the effectiveness of the pressure feedback for stabilizing the 
actuator -load combination. 

i 
1 
1 
I 
I 
1 
I 
1 

c+ 
I L  

For the actuator in the X - 1 5 ,  a i s  approximately 4200 lb/ . Therefol-e,  
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dL 
- -  - 87.5 and the roots of (30) can be evaluated by a root locus plot of (31). 
Juf Ir, 

Using the n , Ad , etc. values in the example above, ( 3 1 )  becomes: 

o r  

S 
80 

+a32 - + l )  
S 

I220 I220 + I )  (- 616 * 616 
+ 0 . 1 3 ~ s  -+ 1) s ( 7  S2 4 0.40 5' 

Figure C-4 i s  a root locus plot of ( C - 3 2 ) .  

= -48 
(C-32) 

Figure C-4 Root Locus of Equation C-32 for a Variations 
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F o r  41 = 4200, these roots a r e  approximately 

- 3 5  * j75 , ( -  10, 000 t) 

and - 143.5 *j953 

The roots resulting from the resonant load have been moved to a f r e -  

quency and damping of a,, = 78 and y = 0.448. This is the limiting value of 

damping that pressure  feedback will be able to provide fo r  the amount of internal 

actuator friction a which w a s  assumed.  

improvement possible if dL can be kept low. 

The root locus of (32)  a lso  shows the 

Returning to equation (29 ) ,  restated here ,  

(C-29) 

one must  analyze the effect of k3 and y3 on the root locati ns of ( 2 9 ) ,  given the 

values of the most predominant roots of s IF1+pllGl. 

AS S - 0 ,  (29)  becomes 

Thus (29)  can be written as 

- " % +  0.297 , - , + / ) ( , , + I )  S 
964.3 l0,OOO ( C - 3 3 )  964.3 -- 

*QK3 3 2  + .896 _. 

A T  78 o= I+ 

R% 
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1 
'I 
I 
1- 
I- 
11 
I 
I 
1 
I 
E 
m 
I 
I 
1 
1 
1 
1 
I 

Equation (33) can be rewritten to determine the effect of k3 and 7' 
s epa r a  tely : 

t 

The t e rm in the square brackets approaches 

+ 0.096 - + I  )(96t:a + 0.297 - +I)  78 964.3 

for  la rge  )c3. 
would resul t  in lclw actuator frequency. 

This is not too desirable because of the root at s r 0 which 

By a root locus plot of the term in square brackets in equation (34), 

Fig. C-5 one finds that no appreciable increase in  damping of the s t ructural  

roots is obtained for  g3 > 10-6. 

to 2.7 x 10-6, 

tural damping for  the problem being considered is  about k 
m o r e  common units, this is a valve displacement of 0 .0225  in. /psi  differential. 

Acceptable values would lie between 0.0173 in. to 0.061 in. /psi .  

Reasonable values of 'lJ lie in the range 1 x 10-6 

The best  balance between the position of the r ea l  root and s t ruc-  

1 .3  x In J =  

F o r  g3 = 1.3 x the root locations of the t e r m s  in  the square brack- 

ets in equation (34) become 

s = - 3 2  

S = -30 *j57 

S = -143 *j954 

( 0 = 64.5, = 0.465) 

( 0 = 964.3, = 0. 1485) 
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Figure C-5 Root Locus of Equation C-34 for ids Variations 



Thus equation ( 3 4 ) ,  f o r  the selected value of Id,, reduces to 

This can be restated a s  a root locus problem in '/?;. The root positions of 

(35) as a function of /r a r e  plotted in Figure C-6. I 
3 

The most significant result  of the locus is that the roots a t  s = 0 and 

s = -32  combine and then c ross  the imaginary axis a t  s = ij40. Intermediate 

values of v%3 resul t  in roots exhibiting good damping and sufficiently high f r e -  

quency to resul t  in very acceptable actuator response character is t ics .  

The most ideal range of 7% is not too obvious from this root locus. The 

high-passcharacteristicsmost effective a r e  between 5 and 100, since & < 5 
would produce low actuator response and a 4 > 100 would possibly produce 

unstable roots.  

3 

3 

I 
Since the optimum value of is unknown, values of 5 ,  15 and 50 a r e  

3 
used as examples in the following analysis. 

% One can now solve the - root locus problem posed in  equation (26 ) .  
A 

Substitution of the values determined in F ig .  C-6, equation (26) becomes, for 

the /r  = 15 case I 
3 
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I 
Figures C-7, C - 8  and C-9  a r e  the root locus plots of (36 )  for /r3 of 

It  is important to note that p re s su re  feedback stabilization with gains 

5, 15 and 50. The present  actuator on the X-15 has a valve gain, '1/A , 
of 30.  

much l e s s  than 10 is not too effective. 

the actuator exhibits good frequency response with no undamped roots and a 

relatively wide bandwidth. Since the actuator phase lag i s  a major factor i n  

the amplitude of the residual oscillation resulting from hysteresis  and dead 

band non-linearities, i t  would be advantageous to have this higher actuator 

frequency response and consequent smaller  phase lags.  

Fo r  gains of the order  of 20 to 50, 

- I  
Figure C-7  Root Locus of Equation C-36 for  7 ,  = 5 

and e, Changes 

50 

1 
I 
I 
-1 
-I 
I 
I 
I 
I 
I 
1 
I 
I 
1 
I 
I 
I 
I 
I 
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- I  
Figure C - 8  Root Locus of Equation C-36 for  y3 = 15 

and g, Changes 

- I  Figure C-9  Root Locus of Equation C-36 for y3 = 50 
and rC, Changes 
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Figure C -  10 Amplitude Ratio v s .  Frequency of Servo Actuator 
for Selected Values of K , / A  , %, and K, 

, .  , . . .  . .  , . . .  , .  , . . .  . .  , . . .  
i.-+ ....._. :..-..+...+ ..,.. . .  , . . :  

. I  , . . .  
j .... i _....... i ..... 1 .... i...:.. 

Figure C- 11 Phase Angle v s .  Frequency of Servo Actuator 
for Selected Values of K , / A  , r3 and E ,  

5 2  
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Figures C-  10 and C-  11 a r e  amplitude ratio and phase angle plots of the 

best case obtained in this analysis. 

The major  advantages of pressure  feedback can be l isted a s :  

a .  

b.  

C. 

d. 

e. 

Resonant loads on the actuator a r e  damped by the p re s su re  

feedback loop. 

Higher valve gains can be employed to increase actuator 

frequency response. 

The control system hysteresis and dead band which exist 

in the present  system and tend to stabilize o r  a t  least  reduce 

the tendency for the structural  oscillation to be excited can be 

reduced. 

amplitude without making the system unstable a t  the high 

frequency mode. 

Servo piston support flexibility and bulk modulus effects which 

are  destabilizing a r e  readily compensated for  by p res su re  

feedback . 
The reaction force transfer function (of the load back to the 

piston) has the same characterist ic equation as the output/input 

displacement t ransfer  function. Therefore,  there  a r e  no s t ruc - 

tu ra l  resonance roots to make the S A S  system unstable for the 

necessary SAS loop gains. 

This will reduce the low frequency residual oscillation 
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PRECE51NG PAGE f31ANK NQT FILMED. 

APPENDIX D 

CALCULATION O F  'THE 
CLOSED LOOP STABILITY CHARACTERISTICS O F  THE SAS SYSTEM 

EMPLOYING A PRESSURE FEEDBACK STABILIZED ACTUATOR 

At g = 0 and for  low frequencies where the surface i s  a rigid unit, the 

roll  acceleration, 5 , resulting from a horizontal stabil izer angular accelera-  

tion is proportional to the ratio of the product of inertia about the horizontal s ta -  

bilizer spindle axis and the moment of inertia of the fuselage. This is symbol- 

ically stated as 

R 
1 
D 
I- 
11. 
I 
I 
1 
8 
I 
I 
1 
I 
I 
1 
I 
1 
I 
I 

where the I , ,  and 

the effective I x v  changes because elements of the surface are  moving at ra tes  

different than the same elements of the rigid body would. 

fective coupling can be approximated by a t ransfer  function of the form 

a r e  the rigid body values.. As the frequency of SA increases  

This increase in the ef- 

a,, is the frequency a t  which the sur face  resonates and 3 is the damping ratio. 

This is not a n  exact representation for  two major  reasons: 

1. The value of Ixv changes with frequency in  a different manner 

than the lumped constant picture that this expression descr ibes .  

The roll  mode of the fuselage couples with the surface motion 

to produce a different t ransfer  function. 

2 .  

A more  exact approximation for the coupling between SA and 0 (ignoring 

for this discussion higher frequency modes) could be expressed as 

5 5  

(D-3 )  



where the gS is a factor to approximate 

is unlikely for  any study of the horizontal 

range 1 ES 4 2 .  

more  accurately the coupling t e r m .  

surface that K, would be outside 

The actuator o r  surface output t ransfer  function a s  a function of input 

command angle, ' A / S A a  , can be considered to be the same as the ' C / * i  

t ransfer  function derived in Appendix C ,  since the scale factor for both is the 

same,  and they a r e  otherwise analogous of each other .  

Thus one i s  able to fo rm a reasonably close representation of the 

t ransfer  function for low 9 conditions. 

This reduces to, for a n  actuator employing p res su re  feedback: 

e 
B The zero  a t  s = -  - results from the actuator f r ic t ion eventually appearing a s  

a viscous load. 

no additional computational difficulty. 
the numerator of ' , / X i  
factor in the denominator of @/SA . 

This t e rm is generally negligible but i s  included since i t  entails 

The resonant roots a r e  cancelled because 

contains .. a quadratic factor  identical to the quadratic 

F o r  values of k! = 1. :3 x 10-6, y, x 0 . 0 2 ,  anti d, = 50,  3 
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The SAS control loop block diagram can then be shown as ;  

S A  s 
SERVO FILTER --+ -- RATE 

GYRO 
- 

\ 

The open loop t ransfer  function KG becomes 

s 
34.1 

r 1 1 
s zz+ Oo8 - 426.6 ' 

e 

I 

+ I  +0.92 - 
JW.2 188.2 

S S t  - 

The roots of the characterist ic equation ( / t Z G  ) determineethe stability 

of the SAS loop. 

Fig .  D-1  is a root locus of equation (8) for  values of ./de5 - Is, 
L 
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Figure D-1 Root Locus of SAS System Employing a 
P r e s s u r e  Feedback Stabilized Actuator 

The gain a t  which roots c r o s s  the imaginary axis  i s  approximately 0 . 0 7 .  

Dividing this by 

Ks 3 = 0 .0253  

yields E = 2.765 

Since the present system has been calculated to go unstable at a = 0 .  1 

with a load damping of 0 .005 ,  the gain improvement possible with a p re s su re  feed- 
back compensated actuator is very  significant. 
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APPENDIX E 

PROPOSED ALL MECHANICAL PRESSURE FEEDBACK 
VALVE CONFIGURATION 

The requirements which must be fulfilled to realize a pract ical  p r e s -  

s u r e  feedback valve for the present application a r e  stated below: 

1. 

2.  

3 .  

4. 

5. 

6 .  

The device should be all  mechanical in operation. 

The friction inherent in the hydraulic seals  of the input rod 

should have no detrimental effect on the operation of the 

p r e s s u r e  feedback system. 

The device should be relatively f r ee  f rom possible 

sticking ( a t  least  as much s o  as a standard electro-  

hydraulic valve). 

Hydraulic wash - out ne two rks  would be prefer red .  

Amplification stages,  unrealistic gearing and incompatible 

spring s izes  must  be avoided i f  possible. 

Easy disassembly for cleaning and inspection and no cr i t ical  

adjustments would be desirable.  

Requirement 1 is obvious and fulfilled. 

Requirement 2 establishes the restr ic t ion that all p re s su re  feedback 

portions of the valve must be inter ior  to the valve (i. e . ,  require no 

sea ls  to the outside). 

Requirement 3 is satisfied by the simple concentric design and the 

relatively strong springs which a r e  used. 

can have circumferential  grooves which help prevent sticking 

Also the shuttle and spool 

Requirement 4 is inherent in the configuration presented by proper  

or i f ice  s ize ,  spring constants and a r e a s .  

Requirement 5 i s  fulfilled because of the available a r e a  and direct  

connection to the main pressure  por t s .  
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Requirement 6 is fulfilled because the complexity is hardly more  

than the  present  valve, 

F i g .  E -  1 i s  a cut-away schematic of the proposed valve configuration. 

VALVE SPOOL PRESSURE f E  EDBACK SlflJTFLE 
/ 

Figure E -  1 Proposed P r e s s u r e  Feedback Valve Configuration 

The valve consists of a relatively standard body with two major  concentric 

rnovable eleirrents called a shuttle and spool. 

the Itwashed-outlt p re s su re  feedback signal which is obtained from the small 

f r e e  piston and the orifice. 

spool, the normal valve input element. 

The shuttle is deflected by  

This deflection i s  independent of the position of the 

The springs a t  the end of the shuttle, in cornbination with the shuttle 

end a r e a  and the f r ee  piston and i t s  spr ings,  deterrriine the deflection serisi- 

tivity of the shuttle for p re s su re  differentials. 

The displaced volume due to shuttle motion in combination with the 

spring coxistants and the flow constricting or i f ice  determine the "wash-out" 

t h e  constant for  the valve. 

indepeiidrntly of pressure  feedback gain, i. e . ,  by changing the or i f ice .  

Changes in t ime coilstant can therefore be made 
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Other concentric configurations might possibly reduce leakage effects 

These nuances by juggling the location of the high and low p res su re  regions. 

of valve design a re  left to the experienced design engineer. 
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PRECEDING PAGE G L R N K  FILMED. 
APPENDIX F 

THE SYNTHESIS O F  TRANSPORT LAGS AND OTHER NETWORKS 
USING FEEDFORWARD AND FEEDBACK TECHNIQUES 

N (s) 
Consider a transfer function having the form Gls) BY a simple 

summation o r  feedforward, one can form a new transfer  function 

Thus a transfer function having a higher order  complexity can be formed by a 

simple summation. 

-)cS 
s a  + a$t b , then simple feedforward If, for instance, KCIS) 

would result  in a t ransfer  function 
S' t (6- K )  S 4 b 

S 2 + a 3 + b  
U @ )  

If &=26 ,  the t ransfer  function would have the form of a n  a l l  pass phase 

shifter.  

( I  + G,(S))(I + G,(S)) . 
A more  complex problem which can be considered is of the form 

This can be synthesized schematically by 

As an  example of the above general form,  le t  the 

be formed by the following circuit. 
G(S) transfer function 
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KR 

KR 
0 

t -  I 
n IDENTICAL 
INPUT 
C I RCU 1'6 S 

1 

I 
1 
I 

The t ransfer  function fo r  any voltage source (zero  impedance) has the f o r m  

If one then forms the product [ I t  G, (s)] [ /+  G, (S)] (S) 

4 - , , s  
where 

and 

the result  will  be 

4 -  - 
Ra-C 

R,C + R ,  
1 
*C2 E 2 2  5 +-  

.- - 
1 
*C2 E 2 2  5 +-  

R,C + R ,  



This ratio of quartics i s  a transfer function having pole and zero locations 

which a r e  symmetr ical  around the imaginary axis a s  well a s  the rea l  axis .  

This can, by proper selection of the roots,  be made the fourth order  Pade 

approximation to a time delay o r  transport  lag. 

A schematic diagram of the network resulting from this appr 

the problem is 
r r 

oach to 

Numerical Example: 

The polynomial expression of a fourth o rde r  Pade approximation for a 

one-second delay is (Reference 7):  

The quadratic fac tors  of the numerator and denominator a r e  
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( S 2 - 1 / . 5 8 S + 9 Q ) ( S 2 -  8.42S+36.5) 
(!S2 + I1.585+46)(5'+ 8.425 + 34.55) 

13 (5) = 

therefore: 

g1 = .855 $ =  ,698 

0, = J46 = 6.78 r ad l sec  3 = j36.5 = 6.04 r a d / s e c  

Ul = .731 ga = ,486 
p,C = 1/ (6 .78  x .855) = . 173 P'C = 1/( .698 x 6.04) = .237 

G = l p 4  SI = 173 K f i  '12, :: 237 K f l  
k;s'= 115.2 K n  %@, = 126.5 K f l  

A pract ical  computer circuit  is therefore:  

The shifting of the poles of a function is quite often made possible by 
feedback techniques. 

tion ie implemented by feedforward techniques. 

methods, etarting f rom a fa i r ly  simple initial t r ans fe r  function, is a powerful 

means toward the realization of complex t r ans fe r  functions which would other- 

wise be too complicated to synthesize economically. 

In a s imi la r  manner ,  the shifting of the zeros  of a func-  

A combination of these two 
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APPENDIX G 

AEROELASTIC EFFECTS O F  HORIZONTAL STABILIZER ON 

F O R  STABILIZER PITCH INPUT 
AIRCRAFT ROLL AND AIRCRAFT PITCH TRANSFER FUNCTIONS 

Introduction 

This appendix presents briefly the equations of motion used in deriving 

t ransfer  functions for airplane rigid body roll  and airplane rigid body pitch, 

including the effects of the two lowest frequency stabil izer normal vibration 

modes for  stabilizer pitch input. 

two t ransfer  functions, as well as those for stabil izer spindle ver t ical  shear ,  

spindle torque, and spindle bending moment a t  the fuselage, in t e rms  of hori-  

zontal stabil izer pitch as an  input, in  vacuo. In addition, the airplane pitch 

and rol l  t ransfer  functions, including the two stabil izer modes and damping 

at high supersonic Mach numbers a r e  presented. Aerodynamic damping t e r m s  

were  derived using piston theory aerodynamics, assuming that the horizontal 

stabil izer is a flat plate, and neglecting the wing. 

Also included a r e  numerical  results for these 

Equations of Motion in Vacuo 

The linearized equations of motion for displacement inputs to the hor i -  

zontal stabil izer fo r  airplane rigid body roll  in vacuo, including the two lowest 

stabil izer normal  modes, can be written: 
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o r ,  in operational form: 

0 

where 

@&) = airplane rigid body roll  displacement, positive for  right 

fete) = horizontal stabilizer pitch displacement, positive for  

H,&) = generalized coordinate for the first normal mode of 

ua(d) = generalized coordinate for  the second normal mode of 

stabil izer downr radians 

right stabil izer leading edge up radians 

the horizontal stabilizer 

the horizontal stabil izer 

= frequency of f i r s t  stabil izer normal  mode, 

r ad l sec  
0, 

d' = frequency of second stabil izer normal mode, 

r ad l sec  

= time, seconds 

A similar s e t  of equations can be written for rigid body pitch, €3 ( t ) ,  
which includes the two stabil izer normal modes.  
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For  rigid body roll,  the Mi,  terms are  defined as fo l lows:  

MI,  = I,, 

where one can define: 

( x ,  y) and ( e , ~ )  - coordinates as defined in  Figure G- 1 

dm .y an element of mass  of the horizontal stabilizer 

k, (e), #, (g) - bending and torsion modal displacements at 

and about the stabil izer elastic axis in the 

normal mode of the stabil izer 

- indicates integration over one surface.  
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Figure C- 1 X -  15 Horizontal Stabilizer Plan View - 
Coordinate Systems Used in Analysis of Appendix G 
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In Table I a r e  listed the lumped mass  breakdown for  the X-15 227 lb 

horizontal stabilizer in te rms  of weights on, and weight unbalances and weight- 

moments of inertia about, the swept elastic axis of the stabil izer.  Also shown 

in Table I a r e  additional lumped weight on, and weight unbalance and moment 

of inertia at the root station about the stabilizer spindle pitch axis. 

latter account for  the large triangular section of the stabil izer forward of the 

pitch axis at the root,  

These 

Station, 
(along elastic 
axis) ,  f t  

Table I NAA Stabilizer Lumped Weight Breakdown 

w 
(Weight) 

lb 

0.333 

1.50 

2 . 6 2  

3.79 

I 
31.1 

41.0 

34.7 

29.0 
4.91 

6.09 

22.4 

18.4 

sa 
(Weight Unbalance) 

lb-ft 

-9 .62 
2.36 

3.80 

2.28 

1.07 

2.96 

Id 
Weight Moment 
of Inertia 

lb-ft2 

33.6 

60.0 

46.9 

29.3 

14.7 

7.  18 

At Station 0.333, at and about stabil izer spindle pitch axis:  

W* s,* 1: 
lb-ft2 lb  lb-ft 

51.0 -86.7 215 

The AM‘, t e r m s  which account f o p  this element of the stabilizer a r e  as 
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where A is the sweep angle for the stabil izer elastic axis 

(s:),, (rz), a r e  the lumped weight unbalance and moment of 

inertia a t  the stabilizer root station about the 

stabilizer spindle axis (+!, (u$, a r e  bending slope aiid torsional displacement 

in  the it3' Stabilizer normal mode at the stabil izer 

root station about the stabil izer elastic axis 

Table I1 lists the k i ( 8 )  and (q) for the two stabil izer normal  

modes in deriving the numerical  result6 pretlented in this appendix. 

Table I1 NAA Calculated Stabilizer Modal Deflections 

Station, # 
(along elas tic 
axis) ,  f t  

0.333 

1.50 

2.62 

3.79 

4.91 

6.09 

F i r s t  

k ,  
ft  

0.087 

0.219 

0.380 

0.565 

0,774 

1.000 

iode 

Q1l 

rad 

0.0092 

0.0105 

0 .01  0 

0 .01  1 9 
0 . 0  163 

0.0201 

Second Mode 

k 2  
f t  

1.337 

1. 155 

1.061 

' 1.024 

1.015 

1.000 

% 
r ad  

-4 .08  

-4.88 

-5.64 

-6.33 

-6.91 

-7.30 

(3, = 0.0993 (3) I = - 0 . 2 2 0  

0, = 9 1 . 0  rad /sec  Oz = 233.5 r a d f s e c  
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The data presented in  Tables I and I1 were obtained from North Amer-  

ican Aviation, Inc. ,  Los Angeles, California. Table I1 data a r e  f rom NAA 

calculations fo r  the 227 lb  stabilizer based on measured stabil izer root flex- 

ibility influence coefficients, and the stabil izer mass  breakdown of Table I. 

For rigid body pitch, cb (S) , in Equation (G-2) is replaced by 8 (S) , 
and the and M j /  t e rms  become: 

MI, * =Yy 

where @(t) = a i rc raf t  rigid body pitch displacement, positive 

nose up, radians 

= distance between a i rc raf t  pitch axis and stabil izer 

pitch axis, assumed to be 16.0 feet for this analysis 

and M t e rms  a r e  the same as for the roll equa- 
34 The M,, M,, J Ma+ 

tions, Equation (G-2). 

For Mach numbers above approximately M S 2.5, piston theory ae ro -  

dynamics should be relatively accurate when applied to the X -  15 horizontal 

ptabilizer. As piston theory is  a quasi-steady aerodynamic theory, the equa- 

tions of motion includitzg piston theory aerodynamics can be written explicitly 

f o r  ve ry  general  t ime -dependent displacements. 
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In operational form, for a i rc raf t  roll  and two stabilizer normal modes,  

and for  a time-dependent stabilizer pitch displacement input, the equations of 

motion a r e :  

1 
where the #ij terrriti a r e  defined in a prevjpus section, the A i j  Ierltls 

I 
a r e  aerodynamic damping coefficients, and the A r j  

stiffness coefficients, and where: 

t e r m s  a r e  aerodylldlrllc 

q z  *%U 
L 

9 
M 2 Mach number 

U = f r ee  s t r eam velocity, f t / s ec  

1 f r ee  s t r eam dyramic p res su re ,  lb / f t  
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It is theoretically possible to include effects of airfoil profile and thick- 

ness in  aerodynamic coefficients derived from piston theory. 

cause of somewhat limited time available for these calculations, s impler  co- 

efficients were computed assuming the stabil izer was a flat plate. F o r  the 

same reason, only the aerodynamic damping t e rms  were actually computed and 

included in the numerical  results presented. 

portant aerodynamic effects on control system behavior a r e  st i l l  retained, al- 

though the inclusion of profile and thickness in the aerodynamic coefficients 

can resul t  in a reduction of aerodynamic damping. 

wing aerodynamics a r e  not included in the present  resul ts .  

wing aerodynamics means that the A 
otherwise be, that is, the aerodynamic damping in roll  i s  considerably under- 

estimated. 

However, be- 

It is believed that the m o r e  im- 

i t  shouid be noted that the 

The neglect of 
1 t e r m  i s  much smaller  than it would 

The A \ /  t e rms  a r e  a s  follows (for a i rc raf t  roll  and two stabil izer 

normal  modes) : 
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wheredA is an element of a r e a  of the stabilizer surface.  

11 
The equatio'ns of motion for a i rc raf t  pitch, two stabilizer modes and 

stabilizer pitch input displacement, including aerodynamics , a r e  a s  in Equa- 

tion (G-3) with Q I S )  replaced by e ( S )  , The Mi j  t e rms  a r e  a s  defined 

t e rms  as follows: 

1 
I 
Dl 
1 
I 

8 
The remaining A ij t e rms  a r e  as defined for the roll  case .  

Equations for Stabilizer Spindle Vertical  Shear ,  Torque, and 

Bending Moment at the Fuselage 

I 
I 
I 
I 

For  a i rc raf t  rigid body roll ,  two stabil izer normal modes and stabil izer 

pitch input displacement in vacuo, the equations for  stabil izer spindle ver t ical  

shear ,  torque and bending moment at  the fuselage ( f rom one stabil izer) a r e :  
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or ,  in operational form:  'I 
M4 

where: V(+)  = vertical  shear ,  positive up, lb 

T(C) = spindle torque, positive in opposite sense fo r  

positive Sk , ft-lb 

M(+) = spindle bending moment, positive for upper fibers 

of stabilizer spindle in  compression, ft-lb 



MI =is yyYdm I 
I 

Y r s  Y - Y *  V D f  

root chord I 

Ms =/s y c  Ih, 4 ?a,) dm + AMz 

M s X h  y r h a  + p , ) d m  + A M ,  

M4=J5 x y'dm -I 

yo = distance from a i rc raf t  roll  axis to stabilizer 

k, - distance from stabil izer root chord to the 
# 

stabil izer root m a s s  station for  (Sa), , (1:) I 
(See F i g u r e  G-  1 ) .  

I 
For  aircraf t  rigid body pitch, two stabil izer normal  modes and etallili- 

zer  pitch input displacernent, the equations a r e  sirnilar to ((3-4) with 8 (SI 
replaced by , and where V, =s ( d , + r ) d m  

T; =fs y ( J * + r ) d m  

S 



Transfer Functions 

The desired t ransfer  functions follow directly f rom the solutions of 

Equations (C-2) and ( G - 3 ) ,  and from Equation (G-4). Let 

After calculation of numerical values of the var ious t e r m s  involved, and sol-  

ving Equations (C-2) and (G-3) for @(S) ,  and the corresponding pitch equa- 

tions for ($1 , there  results 

In v;bcuo, for  a i r c ra f t  roll: 

+~2 /7S ' (S2+a)a2 )+0 .3434S4]  +6.174 S2 

S' 
tg(S) - go [ 0.7S79(31+w,1)(S2+63,3) + I J . O I  S'(S'+L),~) 

+ t%68 5' (Sa+ Usa) -1.686 S * ]  + 32.61 S2 

7 9  

( G - 0 )  

( G - 7 )  



/OW 

A (9 
t p  - -- [ IO. 71 n IO' (5 *+&, *) (S ' .* @'*) + (0.856 J lvv - 3,294 n 1d)S * (5 '+ W,") 
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I,, is in slug-ftz. 

Including stabilizer aerodynamic damping (for M a 2 . 5 ) :  

For Roll: 

Q = f r ee  s t ream dynamic p res su re ,  Ib/ft2 

M = f r ee  s t ream Mach  number 

U = f r ee  s t ream velocity, f t / sec  
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For  Pitch: 

(G-14) 

I 
where 

Analysis of the Effects of Aerodynamic Damping 

E 
1 

r e s  onant frequencies . I 

The fuselage rol l  to spindle axis angle t ransfer  function, including ae ro -  

dynamic damping (piston theory), has  the form of Equation (G- 13). 

The terms in 9 , (@Iz and (4)3 in  the numerator a r e  less  significant 

than the effect of the t e r m s  in 9' , (Q)' and (4j3 in  the denominator a t  the 

Collecting terms in the denominator and using the values of 

3, = 32.2 x 3600 lb-ft2. 
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This simplifius t o  

exhibits reso-  
nant f requcncy 

main damping 

+ = [omm ss + 4.788 #to 4 3  s + 2.95 

term 
+ 1S.IJ1S*+ 7 2 . 5 ~  10 4 2  S + 2.93 x 10 

frequency 
modificatioii 

7.279SB+228.40 Y / 0 4 S  

damping 
modi. f i c a tio 11  

- 2  F3r -;a!~es cf 

and(f)# are negligible. 

from: 

& lQ, the  freqceficy 2nd damping changes resulting from ( 9 )  

Therefore, the roots of the denominator can be found 

A ~ 0 . 8 9 6 3  ~ " + 4 . c / a 8 m 4 ~ 3 + z . 9 3  wmas 
4 2  

loL 
S4 + 72.5 w 1 0  S + 2.93 Y IOa)  = 0 

Restating, one can write 

I +  90 

This is in the form of a root locus problem in 9 , The effective "gain" 

0. 1706 $ for the region abaut the tj83.94 point can be calculated by geometry 
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to be 0.151 = 0.  1706 where 5 is  the radial  distance from the j 83 .94  

point. Since the departure angle of this locus i s  180°, 

for 0 f i & 10 with reasonable accuracy. 

In a s imilar  fashion, one can calculate the "gain" in the region around 

t j 2 1 5 . 4  to obtain a n  expression for  the damping available a t  the second resonant 

mode. 

One obtains 0.  1706 = 0.495 P' 

since 

ga 0.0016 f 

One can see  f rom these resul ts  that tllc aerodynamic damping is relatively 

important for the first mode resonance but is ra ther  small for the second mode. 
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